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Abstract

Perfect crystals of carbon nanotubes tend to form aligned bundles that assume a hexagonal packing configuration in a minimum

energy state. The theoretical constitutive relation for these defect-free crystals is highly anisotropic with a large axial stiffness due to
a network of strong delocalized carbon–carbon bonds and transverse properties that are orders of magnitude lower due to a sole
dependence on non-bonding van der Waals forces. The assemblage of a large number of collimated nanotubes may be expected to
exhibit a distribution of lattice sites containing imperfections caused by packing faults or inclusions that will function as ‘weak-

links’ and adversely affect local stiffness and strength. The present study is therefore directed towards quantifying the effects of
distorted bundle configurations on mechanical properties. To illustrate distortion sensitivity, the transverse shear and bulk moduli
are calculated by considering various magnitudes of random perturbations in nanotube packing. Monte Carlo simulations are

performed to obtain a statistical distribution of predicted moduli. The present analysis demonstrates that even small perturbations
to the lattice geometry give rise to large variations in transverse moduli, and suggests that chemical functionalization to improve
nanotube bundle cohesion may be required for successful structural applications.
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1. Introduction

Reported analytical predictions and experimental
measurements of individual carbon nanotube axial
moduli vary widely in the literature. This variation is
primarily due to the assumed cross-sectional geometry
of the nanotube used to define local continuum proper-
ties such as elastic moduli and moments of inertia for
stiffness calculations. Using a cylindrical shell repre-
sentation for an individual nanotube, the effective axial
modulus is calculated to be on the order of 1.0 TPa
[1,2]. Although the axial stiffness of individual nano-
tubes has been studied extensively, the determination of
mechanical properties in the transverse plane of bundle
configurations normal to the nanotube axes has not
been adequately explored. The transverse properties are
solely dependent on weak van der Waals forces that
characterize the interactions between nanotubes. These
forces cohesively bind the bundle and are the only
mechanism through which loads can be transferred
between individual nanotubes. A carbon nanotube
bundle may be formally classified as a van der Waals
solid and is highly anisotropic with constitutive proper-
ties that differ by orders of magnitude between the axial
and transverse directions.
Techniques for carbon nanotube synthesis and pro-

cessing are constantly evolving, yielding greater control
of nanotube generation and manipulation. However,
fabrication of microfilamentary assemblages consisting
of huge numbers of collimated nanotubes is expected to
result in bundles or ropes containing a distribution of
various imperfections. These imperfections may include
discontinuous nanotubes along the axis of the filament
and cross-section lattice distortions, each causing sig-
nificant reductions in stiffness and strength compared to
a theoretical perfect bundle structure. Discontinuous
nanotubes require that load carried by the covalent
bonds in one nanotube be transferred to surrounding
nanotubes through shear which is mediated by weak
van der Waals forces. This mechanism of load transfer
causes relative sliding of bundle nanotubes yielding
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reduced axial stiffness. Cross-sectional lattice distortions
similarly cause a significant degradation in local trans-
verse properties due to the extreme nonlinearity of the
van der Waals interactions.
Distortions in the transverse lattice plane may be

caused by various defects including embedded amor-
phous carbon, interspersed polymer from the surround-
ing media, Stone–Wales or pentagon–heptagon (5/7)
defects in the bond structure of nanotube surfaces [3],
local twisting or entanglement of nanotubes, and pack-
ing defects in the form of voids or deviations from a
minimum energy hexagonal positional configuration.
For example, Fig. 1 shows a cross section of a small
nanotube bundle obtained from transmission electron
microscopy (TEM). Although a precise interpretation of
the image is difficult, some local regions appear to be
fully populated yet deviate from a perfect hexagonal
packing configuration while others appear to have
missing nanotubes forming either voids or regions
infused with amorphous material.
A recent concept for nanotube-based microfilaments

has postulated a complex filamentary structure com-
posed of ascending orders of bundle aggregates as
shown in Fig. 2 [5]. It appears appropriate to assume
that at each level of assembled bundle complexes, the
hierarchical lattice will assume increasing levels of dis-
order. The physics of individual bundles at the nanos-
cale will ultimately dictate the effective higher-order
continuum properties.
In this paper, the sensitivity of transverse mechanical

properties to lattice distortions of carbon nanotube
crystal lattices is examined. The following sections
describe the calculation of transverse moduli together
with details of a specific unit cell model used to simulate
the nanotube lattice. Various assumptions employed to
simplify the analysis are then discussed. Finally, a series
of Monte Carlo simulations that quantify the sensitivity
of transverse shear (G23) and bulk moduli (K23) to lattice
distortions of varying magnitudes is presented followed
by concluding remarks regarding the implications of the
present analysis.
2. Calculation of transverse nanotube bundle moduli

A specialized methodology, presented in a companion
paper [6], is utilized for calculating effective transverse
moduli of nanotube bundles. In this approach, a unit
cell model incorporating periodic boundary conditions
is defined and specific strain modes applied. The kine-
matics of the shear and bulk strain modes used to cal-
culate the G23 and K23 transverse moduli of a hexagonal
nanotube bundle is shown in Figs. 3 and 4. The kine-
matic fields indicate the motion of the nanotube cen-
troids from an initial stress-free position (x2o, x3o)
under the applied strain. The dashed lines highlight
the distortion of a unit hexagonal cell with surround-
ing image nanotubes in transforming from an
unstrained to a deformed state. For shear straining,
the magnitude of the strain is denoted by � which
corresponds to the developed shear angle. For bulk
strain, the magnitude of the strain is given by e where
e="22+"33. The equal contributions of straining in
the x2 and x3 directions give rise to a dilatational or
volumetric strain mode.
The Lennard–Jones potential is used to compute the

potential energy of nanotube interactions as a combi-
nation of repulsion caused by Pauli exclusion in p-cloud
overlap and attraction due to instantaneously induced
dipoles. The ‘6–12’ form of this atom-pair potential is
expressed as

Fo ¼ 4"LJ
�LJ
rij

� �12

�
�LJ
rij

� �6
" #

ð1Þ

where "LJ is the depth of the energy well, �LJ is the van
der Waals radius, and rij is the separation distance
between the ith and jth atoms [7,8].
Effective initial elastic moduli are calculated from the

change in potential energy due to imposed strain defor-
mations as
Fig. 1. Imperfect nanotube bundle [4].
Fig. 2. Structure of nanotube fiber.
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Cij ¼
@2Fo

@"i@"j
: ð2Þ

where Cij is the material stiffness, �o is the strain energy
density, and "k is the applied strain mode. The strain
modes are applied incrementally, and the potential
energy calculated at each increment. The associated
modulus is then obtained from Eq. (2) where the second
derivative is computed numerically.
It is important to note that the Lennard–Jones pair

potential may severely underpredict interaction forces in
certain nanotube bundle straining modes. This potential
assumes a spherical model of atoms in which the
attractive force of induced dipoles is incorporated
through an effective van der Waals radius and is solely a
function of the radial separation distance, rij, of the
atom centers. Straining in the transverse plane involves
mostly relative radial motion of surface carbon atoms
on adjacent nanotubes as shown in Fig. 5a and justifies
the use of the Lennard–Jones potential. However, the
van der Waals effects are not properly represented in
shearing modes that involve relative tangential motion of
atom pairs such as in axial sliding of adjacent nanotubes.
As depicted in Fig. 5a, infinitesimal tangential motion
yields a nearly zero change in the separation distance,
�rij, which makes the Lennard–Jones estimate of the
potential energy effectively independent of the motion.
This issue has been studied for graphite [9,10] which has a
delocalized electronic structure nearly identical to the
electron orbital fields on the surface of carbon nanotubes.
In these studies, the use of the Lennard–Jones potential
has been shown to underpredict the modulus associated
with parallel plane sliding by an order of magnitude.
3. Unit cell definition

Fig. 6 shows the unit cell used in the present analysis.
A basic tileable unit of a hexagonally packed bundle is
represented by three nanotubes labeled A, B and C in
Fig. 6a. This triad is used to create a rhombic configur-
ation by reflecting the orientation of nanotube B across
a line joining the centers of nanotubes A and C and is
denoted by B�1 as shown in Fig. 6b. The resulting
rhombic unit cell is completed by the imposition of
periodic boundary conditions, which establish the
interaction of image nanotubes in surrounding cells,
thereby simulating bundles of arbitrary size.
Fig. 3. Imposed transverse shear stain on hexagonally packed nanotube array.
Fig. 4. Imposed dilatational strain on hexagonally packed nanotube array.
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For the nanotube crystal used in the present study, all
nanotubes were assumed to be single-walled and of
equal diameter with an achiral zig-zag (12,0) conforma-
tion. Using a carbon–carbon bond length of 1.42 Å
yielded nanotubes with a radius of 0.471 nm [11].
Nanotubes of this radius may be considered effectively
rigid in the transverse plane [11–13]. Therefore, the only
degree of freedom included in the deformations is the
relative motion of the nanotube center. Equilibrating
the system at 0 K resulted in an equilibrium nanotube
center-to-center separation distance, S, of 1.26 nm. In
the transverse plane, all cohesive forces generated dur-
ing applied strain are due to van der Waals effects and
modeled using the Lennard–Jones potential. The para-
meters used in the Lennard–Jones potential are
"LJ=34.0 K and �LJ=0.3406 nm [11].
4. Analysis assumptions

Because of the wide range of possible defects that
could conceivably occur in nanotube bundles, various
simplifying assumptions have been made to demon-
strate lattice distortion sensitivity in a very general
manner. These assumptions are briefly discussed in the
following subsections.

4.1. Reference nanotube bundle configuration

The material model of a carbon nanotube bundle in a
reference minimum energy state, is assumed as a crystal
consisting of a collimated array of straight nanotubes
which exhibit a perfect hexagonal packing configuration
in the cross-section. Because only defects in the trans-
verse plane are considered and the nanotubes are
assumed rigid, no elastic coupling with axial deforma-
tions occurs, yielding an effectively two-dimensional
analysis.

4.2. Spatial distribution of lattice distortion

The model used in the present study assumes a uni-
form distribution of lattice distortion. In an actual
bundle it may be assumed that large sections of the
bundle cross-section would exhibit a perfect hexagonal
packing configuration with a distribution of local sites
containing defects. Therefore, the results of the current
analysis must be regarded as a measure of effective
Fig. 5. Relative motion of surface atoms on adjacent nanotubes.
Fig. 6. Unit cell configuration with periodic boundary conditions.
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mechanical properties valid only in local regions exhi-
biting an assumed distortion in the lattice.

4.3. Initial equilibrium of the lattice

The current analysis models the mechanical properties
associated with two-dimensional transverse planes
along the nanotube bundle axis. Distortions are intro-
duced into the transverse plane by repositioning nano-
tubes within a unit cell resulting in a non-equilibrium
system. This situation occurs for packing faults that
cause voids or non-hexagonal packing configurations,
and also for instantaneous states due to thermal motion.
However, for assumed polymeric or amorphous inclu-
sions, the model used in the current study may be regar-
ded as representing the bundle cross-section along the
bundle axis in the near vicinity of the inclusion and not at
the actual inclusion site. At the location of the inclusion,
the system would be expected to equilibrate to a mini-
mum energy state involving complex interactions with
the atoms forming the inclusion. The detailed modeling
of such nanotube-inclusion aggregates and the requisite
equilibration is not attempted in the current study.

4.4. Thermodynamic state

The present analysis is focused on obtaining material
moduli—which are continuum quantities—based on the
energetics of discrete atomic interactions. In applying
distortions to the assumed unit cell, relationships invol-
ving continuum thermodynamic variables of the atomic
aggregate become important. These quantities are the
number of particles, volume, temperature, and pressure
denoted by N, V, T, and P, respectively. The use of the
model developed in the companion paper [6] assumes a
constant NVT thermodynamic system in which the tem-
perature may be considered at 0 K. Introducing lattice
distortions by repositioning nanotubes yields a sequence
of non-equilibrium configurations that may be con-
sidered equivalent to thermal fluctuations. These distor-
tions suggest that a constant NPT isobaric-isothermal
state may be more appropriate. However, the present
analysis maintains a constant volume constraint to define
elastic moduli which violates an NVT state by making
the effective temperature or pressure variable. Thus,
increasing the magnitude of distortion to the lattice can
be viewed as subjecting the system to an increase in
pressure that will influence results. This influence is
assumed not to significantly affect the demonstration of
sensitivity in predicted moduli to lattice distortion.
5. Monte-Carlo simulation of lattice defects

Monte-Carlo simulations were used to analyze dis-
tortions by introducing random imperfections into the
nanotube lattice from which effective elastic moduli
were calculated. A distortion magnitude, �, and direc-
tion, �, were chosen as random variables to define per-
turbation vectors used to reposition the primary
nanotubes A, B, and C, as shown in Fig. 7. In perform-
ing simulations, a maximum value for the distortion
parameter was defined and intermediate values were
randomly selected within the range �2 (0,�max) for each
trial. The directions were randomly selected within the
angular range �2 (0,2�). Examples of distorted lattices,
shown magnified by a factor of 150 for clarity, are pre-
sented in Fig. 8, and may be compared to the perfect
lattice shown in Fig. 6. Imposing selected strain modes
and calculating the infinitesimal change in potential
energy, the bundle moduli were then obtained from Eq.
(2).
Fig. 9 shows a coarse-binned relative histogram illus-

trating the distribution of the change in the center-to-
center nanotube separation distance, �S, from a perfect
lattice. This distribution for �S corresponds to a dis-
tortion magnitude �max=0.125 Å, and demonstrates
that a uniformly random repositioning of the nanotubes
yields a normal distribution with a zero mean and a
standard deviation of 0.0712 Å.
For the present analysis, the distribution of the ran-

dom perturbation variables were considered uniform
implying that all values within selected ranges were
assumed equally probable. The repositioning of the
nanotubes within the unit cell generally results in a non-
equilibrium cell configuration which is assumed to
represent a locally distorted lattice at a particular cross-
sectional location along the bundle axis. At the location
of a void, this state would be considered representative of
a bundle cross-section in which elevated distortion
energy exists compared to the minimum potential energy
of a perfect hexagonal packing configuration. At the
location of the amorphous or polymeric inclusion, the
bundle is distorted but naturally assumes an equilibrium
energy state. However, along the bundle axis in the vici-
nity of this inclusion site, away from any electrostatic
Fig. 7. Nanotube repositioning in Monte-Carlo simulation.
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interactions with the assumed inclusion and before the
bundle resumes an undisturbed configuration, the lattice
cross-section should exhibit a higher, non-equilibrium
potential energy state and be effectively represented by
the current distortion model.
The basic statistics of the computed moduli are given

by the expectation or mean value, 	, and the standard
deviation, �. Due to the assumption of rigid nanotubes,
the position of the system is defined by six degrees of
freedom representing the two inplane translational
components of the three primary nanotubes shown in
Fig. 6a. Therefore, the required number of Monte-Carlo
trials was anticipated to be relatively small. Using a
value of the distortion magnitude, �max, of 0.125 Å,
numerical studies showed that the mean converged after
125 Monte-Carlo trials while the change in the standard
deviation between 1000 and 2000 trials was on the order
of 2.3%. Therefore, it was deemed adequate to limit
each simulation to 1000 Monte-Carlo trials.
Fig. 10 shows skyline representations of typical rela-

tive frequency histograms of predicted G23 and K23

moduli, computed at �max=0.125 Å. Both the G23 and
K23 predictions show a skewed distribution about the
sample mode, or modulus exhibiting the highest fre-
quency. Because the distortions imposed on the unit cell
are uniformly random, there is an equal probability of
nanotubes being set closer or further apart. The result-
ing distributions reflect the fact that the Lennard–Jones
potential yields a higher potential energy consequence
for the interaction of more proximal nanotubes under
applied strain modes. The shape of the relative fre-
quency histograms suggests a shifted Gamma distribu-
tion to provide an approximate probability density
function to fit the data.
The probability density function, h(x), for a shifted

Gamma distribution is given by

h xð Þ ¼ H x� 
ð Þ
1

G �ð Þ��
x� 
ð Þ

��1exp � x� 
ð Þ=�½ �

0 < x < 1

ð3Þ

where 
 is the shift factor, G(�) and H(x�
) are Gamma
and Heaviside functions, respectively, and � and � are
fitting parameters. The mean and standard deviation are
related to the fitting parameters in the gamma distribu-
tion as

	 ¼ �� þ 
 and � ¼ �
ffiffiffi
�

p
ð4Þ

The fitting parameters were determined by matching
as closely as possible the mean value and observed
standard deviation of the moduli distributions. The shift
and fitting parameters for the transverse shear and bulk
moduli are listed in Table 1.
Using the fitting parameters, the mean and standard

deviation were computed using the relationships given
in Eq. (4). These values are listed in Table 2.
Comparing the results from the Monte-Carlo trials,

the mean value of the transverse shear modulus exhib-
ited a drift that varied from 22.5 to 25.8 GPa. The
standard deviation, however, demonstrated a high sen-
sitivity to increasing lattice distortion. For a value of
�max equal to 0.175 Å (approximately 1.39% of the
center-to-center nanotube separation distance), a single
standard deviation increased from zero (perfect lattice)
to 3.96 GPa, or 17.6% of the mean G23 modulus. The
Gamma distribution of G23 as a function of the max-
imum lattice distortion parameter normalized by the
equilibrium center-to-center distance is shown in Fig. 11.
A similar set ofMonte-Carlo simulations was performed

to assess the variation of the transverse bulk modulus,K23,
with increasing distortion. In the Monte-Carlo trials, the
Fig. 8. Examples of distorted lattice configurations (magnified for clarity).
Fig. 9. Distribution of nanotube separation �S for �max=0.125 Å.
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Fig. 10. Relative frequency histograms of predicted G23 and K23 moduli for �max=0.125 Å.
Table 1

Fitting parameters and shift factors for a gamma distribution of elastic

moduli for various magnitudes of applied lattice distortion
Transverse shear

modulus, G23
Transverse bulk

modulus, K23
�max (Å)
 �
 � (Å)
 
 (Å)
 �
 � (Å)
 
 (Å)
0.0000
 0.00
 0.00
 22.50
 0.00
 0.00
 45.80
0.0625
 1.35
 0.25
 22.54
 1.60
 0.38
 45.99
0.0750
 1.55
 0.35
 22.56
 2.30
 0.43
 45.91
0.0875
 1.77
 0.43
 22.52
 2.70
 0.50
 45.95
0.1000
 1.85
 0.55
 22.48
 3.20
 0.63
 45.78
0.1125
 2.20
 0.65
 22.37
 3.70
 0.78
 45.41
0.1250
 2.45
 0.77
 22.21
 3.93
 0.93
 45.25
0.1375
 2.60
 0.89
 22.18
 4.37
 1.15
 44.57
0.1500
 2.90
 1.05
 21.80
 4.70
 1.30
 44.19
0.1625
 3.15
 1.24
 21.39
 5.20
 1.50
 43.40
0.1750
 3.35
 1.40
 21.10
 5.70
 1.65
 42.70
Table 2

Mean and standard deviation of a gamma distribution obtained from

fitting parameters
Transverse shear

modulus, G23
Transverse bulk

modulus, K23
�max (Å)
 	 (GPa)
 � (GPa)
 	 (GPa)
 � (GPa)
0.0000
 22.5
 0.00
 45.8
 0.00
0.0625
 22.9
 0.68
 46.6
 0.99
0.0750
 23.1
 0.92
 46.9
 1.51
0.0875
 23.3
 1.16
 47.3
 1.91
0.1000
 23.5
 1.37
 47.8
 2.54
0.1125
 23.8
 1.77
 48.3
 3.27
0.1250
 24.1
 2.15
 48.9
 3.79
0.1375
 24.5
 2.45
 49.6
 4.69
0.1500
 24.9
 2.97
 50.3
 5.36
0.1625
 25.3
 3.51
 51.2
 6.37
0.1750
 25.8
 3.96
 52.1
 7.32
Fig. 11. Normal distributions of G23 shear modulus with lattice distortion.
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expectation value for the modulus demonstrated a sig-
nificant drift that varied from 45.8 to 52.1 GPa. For
�max equal to 0.175 Å, a single standard deviation (7.32
GPa) equals 14.1% of the mean K23 modulus. The
Gamma distribution of K23 as a function of the nor-
malized lattice distortion parameter is shown in Fig. 12.
As shown in Figs. 11 and 12 both the bulk modulus,

K23, and shear modulus, G23, show a drift in the mean
value of the modulus that increases with �max. This
increase can be attributed to the effect of greater nano-
tube interaction under applied strain modes due to the
random distortion or, interpreted differently, the con-
sequential increase in pressure exerted on the nanotubes
due to the constant volume constraint used in the present
analysis. The principal result for each set of distributions
is the large increase in variation with increasing lattice
distortion. For structural applications of nanotube bun-
dles—such as microfilamentary hierarchical aggregates
of nanotubes as postulated in Fig. 2—distortion sensi-
tivity under combined transverse dilatational and shear
straining may contribute to an unacceptably large
uncertainty in mechanical properties.
6. Concluding remarks

The transverse moduli of carbon nanotube crystals
have been shown to be highly sensitive to small distor-
tions in the packing configuration exhibited by carbon
nanotube bundles. This sensitivity is due to the weak
and highly nonlinear van der Waals forces that con-
stitute internanotube cohesion, and creates significant
uncertainty in the predicted transverse moduli. The
intrinsic variation of mechanical properties due to
internal faults has important consequences on material
integrity and indicates that the development of new
synthesis and fabrication methods should maximize the
precision in forming nanotube bundle aggregates to
mitigate this effect. Alternatively, the present analysis
suggests that future research into nanotube bundle
synthesis be directed towards functionalization of
nanotubes to create covalent cross-links in order to
improve cohesion. Improved transverse properties may
be required to fully realize the tremendous stiffness and
strength potential of carbon nanotube crystals for suc-
cessful structural applications such as reinforcement in
future polymeric composite materials.
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